Blog Post

Ryan Carter,
William Ellett,
England Kwok,

Robert Smith,
Ambar Srivastava

June 1, 2019

Contents
1 Introduction

2 Robot and Task Integration

2.1 Motor and Sensor Selection e
2.2 System Architecture
2.2.1 Motion Planning Structureo
2.2.2 Communication
2.2.3 Embedded Software
2.3 Calibration e
2.4 Automation
2.4.1 Motion Planningo
2.4.2 Robot Automation

3 Discussion

3.1 Design of Manipulator
3.1.1 Design Goals
3.1.2 Base . ..o
313 Arm ..o
3.1.4 End Effector
3.1.5 BasePlane
3.1.6 Embedded Components

3.2 Results e
3.2.1 Full Jenga Tower Build Time
3.2.2 Control Parameter Tuning

3.3 Possible Improvements

4 Conclusion

Blog Post

1 Introduction

The goal of this project was to design, build and program a robotic manipulator to automate
stacking a Jenga tower. The essential requirements of the task were for it to be capable of
picking up Jenga blocks from a fixed loading bay, and then placing them to produce a stacked
Jenga tower. Additionally, it was essential for the manipulator to have a user interface in which
the loading bay location and stack location could be changed.

This task required at minimum a five degree of freedom system in order to stack a tower.
Three translation degrees of freedom (z, y, 2), one rotational degree of freedom (6, in frame 0)
and an actuation degree of freedom for gripping the block. To achieve these task space require-
ments, the team developed the concept for a robotic arm. This robotic arm has six motors,
and hence its position is described by six generalised coordinates. Four of these generalised
coordinates are rotational degrees of freedom: ¢q, ¢2, ¢35 and ¢5. g4 is a constrained rotational
coordinate. This constraint was derived from the task space definition of the Jenga block, which
excludes 6, and 6, rotations in frame 0; in other words, the block always remains horizontal.
q¢ defines the state of the gripper.

Speed and accuracy were the two major metrics by which the team defined performance.
This report will discuss hardware selection, motion planning, control and system architecture,
in particular the discussion will be centred around how these design elements impacted system
performance. A discussion on results and potential improvements is also included.

2 Robot and Task Integration

2.1 Motor and Sensor Selection

The selection of motors and sensors had an impact on both speed and accuracy. The motors
selected were Dynamixel XL430 and XL320 servomotors with in built motor control units
(MCUs). The XL430’s were used to meet the higher torque requirements of the main arm,
with smaller XI.320’s on the end effector to reduce end effector mass. Although more expensive
than many other available servos, the MCUs provide the advantage of outputting position
and velocity feedback. Additionally, the MCUs have position control and velocity control
modes which allow more flexibility in control system implementation. The motor encoders
had sufficiently high resolution (0.088°) to meet the teams position error requirements. Using
forward kinematics, the maximum absolute error due to the encoder resolution was found to
be 0.9mm.

2.2 System Architecture

The system architecture consists of two main subsystems: Matlab, running on a laptop or PC,
and an OpenCM controller board. Matlab is connected to the OpenCM board via USB and
they communicate with serial. The computing power of Matlab is used to create the motion
plan and send the resulting polynomial coefficients to the OpenCM.

2.2.1 Motion Planning Structure

Trajectory generation software is built using an object-oriented structure in Matlab with sev-
eral layers of inheritance. This allows for the generation of motion plans at a high level of

Page 1

Blog Post

abstraction, see section 2.4.1.

At the lowest level, trajectories are generated as piecewise cubic polynomials with an arbi-
trary number of degrees of freedom, and an arbitrary number of via points. This generalised
approach allows for fast tuning of a motion plan by the ability to use any number of continuous
via points, which may be easily added or removed. The robot trajectory class inherits from
this trajectory generation class, constraining the trajectory with properties specific to the robot
design. This class provides functionality to convert trajectory data into a form as described in
section 2.2.2 for communication with the OpenCM controller board, as well as plotting com-
mands which may be used for validation of trajectories and debugging.

All robot motion commands inherit from the robot trajectory class. This allows different
commands and movement strategies to retain the same communication protocols and basic
structure whilst changing the prescribed motion. Different motion strategies were able to be
tested using this approach by simply changing the calculation methods used to determine via
point locations and times.

2.2.2 Communication

Matlab OpenCM

Create motion plan

Build tower

Send data
chunk

Finished trajector

Receive
data

Run control

buildtowerGUI.mapp

Figure 1: Overview of system architecture

Sending a single cubic polynomial requires sending it’s 4 coefficients and time domain (¢,
and 7). This is sent as an ASCII string with the format a3 a2 a1l a0 tO tf. A large motion
plan is sent in chunks, where a chunk is any number of polynomials less than the maximum
constrained by memory on the OpenCM. This results in arrays of polynomial coefficients plus
their time domains storing the trajectories for x(t), y(t), z(t), 6(t) and grip(¢) (see section 77
for detail on how these are used). The OpenCM will use these to generate the trajectory during
run time for motor commands. The generation of these trajectories can be validated by having
the OpenCM simulate operation without actuating the motors, instead sending the generated
data over serial to Matlab for plotting and validation.

2.2.3 Embedded Software

The OpenCM board keeps an internal state machine to organise operation. This enables the
system to remain running, and to run a variety of operations without needing to reboot. Typical
operation has the system in WAITING until a command is sent using the Matlab GUI, which
causes a state change to run the chosen command until it’s complete and the state returns to
WAITING. The states are summarised in table 1.

Page 2

Blog Post

State name | Description

WAITING Initial state, listens to serial for a command and changes state
RECEIVING | Receiving polynomial data: a3 a2 al a0 t0 tf
PLOTTING Sending generated trajectories from stored polynomials over serial for

plotting with Matlab
RUN_CONTROL | Run currently stored trajectories with position or velocity control
READ With motors disabled continuously send measured joint angles
CALIBRATE | Like READ, but can also calculate error from a reference
SEND_CURRENT | Send current task space vector X, using measured joint angles and for-
ward kinematics

Table 1: OpenCM states summary

2.3 Calibration

Calibration of the manipulator was critical in order to improve the end effector position accu-
racy. In order to achieve this, a regression analysis was completed on 350 data points, taking
known end effector positions and using inverse kinematics to calculate expected ¢ values. Com-
paring the calculated values to measured resulted in a distribution of calibration values, shown
for g3 in figure 2. The result of this analysis was a linear fit for each motors inbuilt encoder in
the form:

Gcalculated = SCALE x (measured T OFFSET

As can be seen in figure 2, the scale factor for ¢z is 0.9875, whilst the offset is 4+0.0112rad.
The data gathered displayed a high correlation with the linear relation, with ¢3 displaying
R? = 0.9976, indicating that the assumed linear approximation is appropriate for this analysis.

g3 Calibration Data Calculated vs Measured

0.2
0.1

_ s d®

3 e ¥

o

o038 0.7 06 05 04 .0.3 0.2 ™ . o 01

> it

w -0.2

g -0.3 ® q3c

3 I.--- 0.4 +eseeese Linear (g3c)

m - -0.5

= “-' oe y =0.9876x +0.0112

= oo’ ’ R2=0.9976

8] o -0.7

o

o -0.8

g3 Measured from Motor (rad)

Figure 2: Calculated g3 angle using inverse kinematics VS Calibration Data collected for g3
actuator from 350 data points

2.4 Automation
2.4.1 Motion Planning

A class was developed for determining the build sequence for a Jenga tower from a given build
location and orientation. The available build space is broken up into regions to determine the
order and direction of block placement satisfying constraints on the end effector position and

Page 3

Blog Post

orientation. This ensures the generation of feasible build sequences within the robot’s mechan-
ical constraints, with a flexibility of tower location and orientation. Parametric via points are
generated from every block in the tower build for positions to drop the block, approach the
tower, and withdraw from the tower.

A motion plan can be constructed as a sequence of robot commands, each calculated as
a task space trajectory to send to the robot, as detailed in section 2.2.1. Each movement
command is calculated from a series of via points generated from the associated block and
loading bay coordinates. Via point times in each command are calculated parametrically from
start time and duration of the command. This parametric approach enables every trajectory
to be generated automatically for any tower position and orientation in the build space, and
allows for time-scaling to provide different speeds, prioritising minimum build time or accuracy
of block placement.

2.4.2 Robot Automation

Both control architectures mentioned in section 77 have similar automation procedures which
are described in listing 1 and 2.

for every polynomial stored
while i < nPolys:
evaluate until reached end of current polys time domain
t = currentTime()
tf = polys[i].tf
while t < tf:
reference task space position
Xr = cubicEvaluate(polys[i], t)
reference joint space
Qr = inverseKinematics (Xr)
send position commands to motors
writeQToServos (Qr)
t = currentTime()
finished this poly, move onto next
i+=1

Listing 1: Position Control Pseudocode

Page 4

Blog Post

for every polynomial stored
while i < nPolys:

evaluate unttl reached end of current polys time domain

t = currentTime()

tf = polys[i].tf

while t < tf:
reference task space position and velocity
Xr = cubicEvaluate(polys[i], t)
Xdr = quadEvaluate(polys[i], t)
reference joint space
Qr = inverseKinematics (Xr)
measured joint and task space
Qm = readQfromServos()
Xm = forwardKinematics(Qm)
PD wvelocity control using error in task space
Xdc = velocityControl (Xr, Xm)
convert task space welocity control to joint space velocity
Qdc = inverseJacobian(Xdc, Qm)
writeQdToServos (Qdc)
t = currentTime()

finished this poly, move onto next

i+=1

Listing 2: Velocity Control Psuedocode

3 Discussion

3.1 Design of Manipulator
3.1.1 Design Goals

In order to minimise the influence of mechanical components on the automation side of the
project and adhere to the top level project goals to maximise both precision and accuracy and
minimise build time, specific design goals were set for mechanical component design, those goals
being;:

e Minimise system mass & moment of inertia
e Maximise system rigidity (minimise compliance and slop)
e Minimise system friction

e Maximise system robustness to tolerance error

Minimising system mass was extremely important, as higher mass manipulators require
higher motor torques in order to support the static weight of the system. Furthermore, the
inertia inherent to moving systems is dependant on system mass, and directly influences the
actuators ability to accelerate that mass in a controllable and desirable way. System rigidity is
dependant on each components resistance to mechanical compliance, that being the deflection
of each member under load, in addition to mechanical slop, relating to ill-constrained joints
between system parts. Friction in rotating and sliding joints is extremely detrimental to system
performance, as this increases the torque required to accelerate the system. In addition, it
introduces issues with repeatability, wherein the system responds differently to actuator inputs

Page 5

Blog Post

due to inconsistent/varying friction within each joint (as a result of slight differences in slop
position and compliance). Maximising robustness relates primarily to the systems ability to
perform to an acceptable standard despite small differences in position/speed.

3.1.2 Base

The Base of the manipulator was designed to be tall and wide, utilising a 140mm slew bearing
in order to facilitate the rotation of ¢, aiding in L; rigidity. 3D printing was utilised in order
to ensure manufacture accuracy. A removable 3D printed electronics pod was implemented, to
improve serviceability of all critical electronic components. This also provided reliability, by
ensuring these components were safe from rough handling.

3.1.3 Arm

The manipulator arm was built using a parallelogram kinematic design. The links were con-
structed from carbon fibre tubes to minimise linkage masses and moment of inertia, and max-
imise link rigidity. Joints were manufactured from 3d printed resin parts using a poly-jet 3d
printer to minimise manufacture tolerance error.

Whilst arm weight was relatively low, a spring assist was placed on the joint g, in order to
reduce the static torque requirement on this joint. It was decided to utilise extension springs, as
torsion springs proved costly due to the lack of stock components able to meet specifications.
To ensure sufficient assisting torque, the static torque requirement on ¢, was calculated at
positions bounding the usable travel of the manipulator. As can be seen in figure 3, those
points are at the top and bottom of the tower at a 300mm and 200mm radius. Taking into
consideration the changing moment arm length as ¢, rotates, and the lower mounting point of
the spring, an available spring was selected. As can be seen in figure 3, a stiffness of 0.666N /mm
(2x0.333N/mm springs in parallel) resulted in a close fit to the critical points. With this design,
the majority of static load on the ¢s joint was countered by the spring, resulting in better
utilisation of ¢go motor torque.

g2 angle vs torque provided by a K = 0.666N/mm extension spring

0.7 — *
* r=300mm, bottom of tower
0.6 — * r=300mm, top of tower PREE
= # r=200mm, bottom of tower L g g kX i *
Z 05+ r=200mm, top of tower RS
. o
=
S04
=}
'_
03—
0.2 | | | | | 1 | |
0 10 20 30 40 50 60 70

g2 Rotation (Deg)

Figure 3: Spring Design for ¢y assist, displaying points at four extreme end effector positions

3.1.4 End Effector

The end effector was designed utilising a double rack and pinion mechanism, allowing linear
movement of both gripper sides with the rotation of one actuator. These grippers were guided
by rails and linear bearings in order to reduce sliding friction. Mass optimisation was carried
out on the main end effector bracket, with the second iteration eliminating 40% of the initial

Page 6

Blog Post

end effector weight, resulting in less static torque applied to the q2 actuator. The grippers were
designed to maximise system robustness. Mechanically limiting the gripper such that a block
could not get stuck in an undesirable position, coupled with a top and back wall on the gripper
meant that the manipulator could be pushed hard up against the block, making the system
more robust to end effector errors in the pickup sequence. The addition of a laser pointer in
the centre of the end effector allowed for easy position calibration, coupled with a Cartesian
grid engraved in the base plane to improve the ease of actuator calibration.

3.1.5 Base Plane

The base plane was laser cut from MDF, with laser engraving of a Cartesian coordinate sys-
tem. The laser engraving provided precise markings on the board to be used as an integrated
calibration table. Line spacing for the calibration table was set at 12.5mm as this provided a
good match for the 25mm x 75mm jenga blocks. Two in-set loading bays were implemented
3mm below the base plane surface, allowing each block to be pushed up against its bay walls
ensuring accurate positioning in the end effector grippers.

3.1.6 Embedded Components

For the embedded system controller, an OpenCM9.04 board was used. This board was chosen
for ease of integration, as it was supplied with connectors to interface with the Dynamixel motors
via the TTL protocol. The high clock speed of 72Mhz was also considered as a beneficial factor
over some other embedded controllers as this allowed a sufficiently high clock speed for fast
motion control.

3.2 Results
3.2.1 Full Jenga Tower Build Time

The fastest full tower build achieved was 3:04min, shown in figure 4. Reaching this timing
requires sweeping approximately 60° in 1s for each movement between the loading bay and
tower. At these speeds, the base joint (q;) overshoots noticeably on the blocks furthest from
the loading bay that require the fastest ¢; movement. This effect decreases for each vertical
layer as more time is allocated to allow for the increased height, thereby lowering the required
q1 velocity. Slower trajectories eliminate this problem, as seen in figure 5.

3.2.2 Control Parameter Tuning

Joint-space position control was tuned using a test trajectory that incorporated angular speeds
around 40°/s, similar to what was used in the fast tower build mode. Pauses were used between
movements to observe settling behaviour. The results are shown in figure 6, using the position
control gains in table 2.

Motor/Control | P | I | D
XL430 Position | 640 | 100 | 9000
XL430 Velocity | 100 | - | 1000
XL320 Position | 32 0 0

Table 2: Motor (joint-space) gains used

Page 7

Blog Post

Figure 4: Fast build in 3:04min

Figure 5: Accurate build in 6:00min

We were unable to tune task-space velocity control to even a minimum performance speci-
fication that would allow us to stack a tower at a reasonable speed. Example results in figure
7 show the issues we had with significant oscillation whilst testing a large range of PID values.

Axis ‘ P‘

T 5
Y 7
5

1
5
5
z 1

HOO@

Table 3: Velocity control task-space PID gains

Page 8

Blog Post

Joint Angles, f=26.174Hz

15—
— — —qglr
— — —qgZr
fm._‘_\ q3r
Ir \
1 N W g1im
1] | II q2m
I o
W q3m
[|| 11
= 1 '
g 051 [|||
s | I| 1
= N |
c H [
=y 1 Al
E Lk —L/ \
3 !
"II".'. | I
W | rll|
osfF H
\ \ |I ll
\n’ ———————————————————
I — |
I N i —— ! ! ! |
70 72 74 76 78 80 90
Time (s)
Figure 6: Position control on a test trajectory
Joint Angles, f=17.2742Hz
15—
1
g 0.5
@
2 o =,
E \
Fosl
S 05 ¢
= A
bt
A
15 1 1 1 1 1 1 1 1 |
45 50 55 60 65 70 75 80 85 90
Task Space Position
0.3
A0 f === .'I' — — —xr
0.2 =) — =~y "- x.\,%wu— e — — — YT
hﬂl__ ,_____‘oj A LN '{/'TJ/ ﬁ*\f\m___u___&_____‘_‘___&g zr
u“T/’v"’“——' e __,: ey - xm
00 1/ | ym
-~ zm
= . /
S of 3 — e S VoA — Y AN
g \
O ogar \ “\ '
021 \ b e -
03 | | | | | | | | |
45 50 55 60 65 70 75 80 85 90
Time(s)

Figure 7: Velocity control on a test trajectory

3.3 Possible Improvements

While the results of this robot design have been in general quite good, a number of small
short-comings have been identified as areas for possible improvement.

Robust constraint-based motion planning: although separating the available build
space into regions provided a feasible build sequence for many scenarios; using a constraint
based solver for motion planning could allow the range of the build space to be robustly

Page 9

Blog Post

4

extended, and enable path optimisation.

g; joint limits: the g5 joint (end effector orientation) is mechanically constrained, such
that it cannot achieve a full 360°of rotation. In several cases this requires the robot
to build the tower from the opposite side (from the loading bay). Increasing the range
of g5 could reduce the constraints on the motion plan and allow for more optimal path
planning. This advantage should be compared against the relative cost in mechanical
design of extending the range of this joint.

Time optimisation with torque constraints: using torque constraints of each motor,
the time of each trajectory segment may be optimised to use available motor torque. This
could provide a more optimal time for every trajectory segment, improving the balance
between speed and accuracy.

SD card to front-load serial communication delays: During the build tower se-
quence, the arm needs to pause at the loading before picking up the next block whilst
the trajectory data is sent. Each pause with the motion planning implemented was an
average of 0.4s, and occurs 54 times in a complete tower build. Using a SD card would
allow all the trajectory data to be transmitted up front, but would mean a pause of at
least 20s before operation would start.

Velocity control: Tuning of the PID controllers was unsuccessful due to the unclear
starting point, large number of parameters and unknown system model. By finding a
system model of the robot using fast Fourier transforms, PID controllers can be designed
and simulated in Matlab or Simulink then fine-tuned on the robot. This could prove a
more productive strategy.

Conclusion

All essential criteria of the task were met. The great manipulator Jenghis Khan can construct
a full tower in a time of 3:04min. Matlab was used to complete the motion planning, which
could build a tower at any location and orientation within the robots reachable work-space.
The robustness of the motion plan strategy also allowed the user to choose the build time of
the tower, depending on whether they preferred a fast or accurate build. While task-space
velocity control was explored extensively, this was unable to achieve the same performance as
joint space position control.

Page 10

